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Short-range order in face-centered cubic VCoNi alloys
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Concentrated solid solutions including the class of high entropy alloys (HEAs) have attracted enormous
attention recently. Among these alloys a recently developed face-centered cubic (fcc) equiatomic VCoNi alloy
revealed extraordinary high yield strength, exceeding previous high-strength fcc CrCoNi and FeCoNiCrMn
alloys. Significant lattice distortions had been reported in the VCoNi solid solution. There is, however, a lack of
knowledge about potential short-range order (SRO) and its implications for most of these alloys. We performed
first-principles calculations and Monte Carlo simulations to compute the degree of SRO for fcc VCoNi, namely,
by utilizing the coherent-potential approximation in combination with the generalized perturbation method as
well as the supercell method in combination with recently developed machine-learned potentials. We analyze
the chemical SRO parameters as well as the impact on other properties such as relaxation energies and lattice
distortions.
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I. INTRODUCTION

Multicomponent alloys, also known as high entropy al-
loys (HEAs) or chemically complex alloys (CCAs), have
attracted enormous attention in the last decade, from theory
and experiment, due to their remarkable materials properties
and overwhelming compositional phase space for alloy de-
sign [1–3]. A recent example is an equiatomic face-centered
cubic (fcc) single-phase VCoNi alloy revealing remarkable
strength [4].

One of the key components in the design and exploration
of multicomponent alloys is the knowledge about its phase
stability. In fact, many such alloys have been demonstrated to
decompose at elevated temperatures, e.g., the equiatomic fcc
FeCoNiCrMn (also known as Cantor alloy) [5]. An impor-
tant issue to address is therefore whether the solid solutions
involve local chemical ordering or short-range order (SRO),
which could affect, e.g., defect properties and hence their me-
chanical properties. This has, for example, been demonstrated
in recent simulations of computed stacking-fault energies in
fcc CrCoNi [6,7]. There are also some experimental results
suggesting the presence of SRO in selected fcc HEAs such as,
e.g., fcc CrCoNi [7,8], fcc FeCoNiCr [9,10], in Ni-Co-Fe-Cr
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alloys [11], and fcc CrFeCoNiPd [12]. In Ref. [7], a corre-
lation between the mechanical behavior and SRO has been
established for fcc CrCoNi.

For VCoNi, which is in the focus of the present work, a
single-phase solid solution has been experimentally confirmed
at 900 ◦C [4]. For lower temperatures, recent experiments
revealed formation of a (Co,Ni)3V κ phase at around
850 ◦C [13] as well as a secondary, V-rich σ phase at tem-
peratures below 800 ◦C. The κ phase features a close-packed
ordered nine-layered hexagonal structure with an abcbcacab
packing sequence [13–16] with characteristic layered-wise
enrichment and depletion of V. This suggests that V could
play a key role for the SRO in the solid solution. As mentioned
above, the SRO could impact different properties such as, e.g.,
the degree of lattice distortions, which was one of the key
computational descriptors to develop this high-strength alloy
and for which V played a dominant role [4]. It is therefore
crucial to accurately determine the degree of SRO and its
implication for these properties.

As mentioned above, for most of the alloys only lim-
ited experimental information is available for quantifying the
degree of SRO. In addition to experiments, in particular,
ab initio-based density-functional theory (DFT) calculations
have therefore been utilized to explore multicomponent al-
loys [2]. A number of such techniques are available to
address phase stability and, in particular, SRO; among
them the coherent-potential approximation (CPA) [17,18]
based methods such as the generalized perturbation method
(GPM) [19–21] in combination with Monte Carlo (MC) sim-
ulations or the concentration wave method [22,23]. These
methods have been extensively employed in the past few
years for multicomponent alloys [10,23–27] also due to their
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computational efficiency. A limitation of such mean-field ap-
proaches is, however, the great challenge to include local
relaxation effects, which can be important for phase stability
considerations [28,29]. One alternative is explicit DFT-based
Monte Carlo simulations employing supercells [6,30–32].
These calculations are, however, restricted to rather small
simulation boxes (typically a few hundred) and also com-
putationally extremely demanding. Therefore, DFT-derived
energies are often mapped onto effective models such as
the cluster-expansion technique [33], which is, however,
computationally inefficient when treating multicomponent al-
loys [34]. An alternative to these approaches is provided by
recently developed machine-learned potentials, which allow
one to extremely efficiently parametrize the energy landscape,
in particular for multicomponent alloys [29,34].

In the present work we employ two state-of-the art ap-
proaches. One is the recently developed low-rank potential
(LRP), a machine-learned potential based on supercell cal-
culations allowing us to fully account for lattice-relaxation
effects. In addition, to estimate the importance of magnetic
excitations, we perform Green’s function multiple-scattering
theory calculations to extract chemical effective interactions
and study their dependence on the high-temperature mag-
netic state, which accounts for longitudinal spin fluctuations
(LSF). The order-disorder transition is computed as well as
the SRO parameters above the critical temperature. Poten-
tial implications, e.g., on lattice distortions and solid-solution
strengthening contributions, are discussed.

II. COMPUTATIONAL DETAILS

A. Density-functional theory calculations for supercell approach

As outlined in the introduction above, the first model
we employ is the low-rank interatomic potential (LRP) [34]
(see also below), which is used as an interaction model in
canonical Monte Carlo (MC) simulations in order to inves-
tigate short-range order and order-disorder phase transitions
in the equiatomic VCoNi system. The LRP model is based
on spin-polarized DFT calculations. To compute the refer-
ence energies of atomic configurations for the LRP training,
VASP 5.4.1. [35–38] was used in combination with the pro-
jector augmented wave (PAW) method [39] and utilizing the
Perdew-Burke-Ernzerhof generalized gradient approximation
(PBE-GGA) [40]. Since we are interested in quantifying the
degree of SRO at high temperatures, we performed the cor-
responding calculations at a lattice constant corresponding to
high temperatures. The lattice constant has been derived from
a Debye-Grüneisen model [41] at 1175 K, which is around the
experimentally observed phase transition [13]. For the Debye-
Grüneisen model, we computed the total energy of the alloy,
E (V ), bulk modulus, and its derivative utilizing a 3 × 3 × 3
(108 atom) special quasirandom (SQS) [42] structure. The
predicted room-temperature lattice constant of 3.599 Å is very
close to the experimental value of 3.601 Å [4]. The obtained
value at 1175 K, 3.643 Å, has been employed to compute the
structures entering the training set, see below.

For the training set of the potential, different supercell sizes
are chosen, ranging from 2 × 2 × 2 (32 atoms) to 3 × 3 × 3
(108 atoms). The value of the plane-wave cutoff energy is

chosen to be 320 eV, which is 1.2 times larger than the recom-
mended cutoff energy of the PAW pseudopotentials utilized.
A k-point mesh is generated by the Monkhorst-Pack [43]
scheme and is 6 × 6 × 6 for the system with 32 atoms,
4 × 6 × 6 for the system with 48 atoms, and 4 × 4 × 4 for
systems with 108 atoms. Ionic relaxations of atomic positions
are included in the calculations to account for the impact of
lattice relaxations, which is presumably large in this alloy [4].
The energy convergence criteria for the ionic relaxations are
set to achieve an error of 10−4 eV. Electronic excitations
are included by utilizing the Fermi distribution in the DFT
calculations with a smearing parameter of 0.1 eV, which corre-
sponds to a temperature close to the experimentally observed
transition temperature.

B. The low-rank potential method

The atomistic structure for the LRP [34] model is repre-
sented as site occupancies in the ideal crystalline lattice. Each
site is occupied by one of the atomic species (V, Co, Ni in
this case). The sequence of atomic species among the closest
neighbors of each site represents the environment of this site.
The environment of each site has a contribution to the energy
of the atomic configuration given by the formula

V (ξ ) = V (σ1, . . . , σn) = V (σ (ξ + r1), . . . , σ (ξ + rn)), (1)

where V is the LRP model in the tensor form, as described
below, ξ is the position of a central atom, σ (ξ + ri ) is the
species of the ith site and ri is the vector connecting the central
site with the ith neighbor, and n is the number of closest neigh-
bors in the environment, including the central atom (n = 13
in the fcc case). The local lattice distortions are allowed as
long as the topology of the supercell stays the same. The full
energy of an atomic configuration can be described as a sum
of individual contributions of the environments:

E (σ ) =
∑

ξ∈�

V (ξ ), (2)

where � is the lattice sites periodically repeated in space. The
tensor V contains energy contributions of all possible atomic
environments, namely, mn environments, where m is the num-
ber of species in the system. Thus, for a fcc system with m = 3
species ({V, Co, Ni} in this case) the tensor V consists of
about 1.6 million coefficients which is completely unfeasible
to obtain from quantum-mechanical data. To remedy this, the
LRP potential postulates a certain low-rank structure of V ,
or, to be precise, that there are some good approximants of
V among the low-rank 13-dimensional tensors in the sense
of the tensor-train decomposition [44]. This decomposition
scheme will be explained in the following. Let us consider
for the moment that V is a large N × N matrix (i.e., a two-
dimensional tensor). We identify the matrix V with a discrete
function V (σ1, σ2). Assuming that the matrix V has a low rank
r means that the column vectors of V can be expressed as a
linear combination of r vectors w1, . . . ,wr :

V (σ1, σ2) =
r∑

i=1

ui(σ1)wi(σ2). (3)

Here we used the notation ui(σ1) for the coefficients of
the linear expansion to make the notation symmetric. The
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expansion (3) is reminiscent of the method of separation of
variables and could be motivated as follows: Often when the
matrix V describes some regular (smooth) function, only a few
singular values si are far from zero,

V (σ1, σ2) ≈
r∑

i=1

siui(σ1)wi(σ2),

where the right-hand side is precisely a singular value decom-
position. For symmetric positive-definite matrices V , si would
be the nonzero eigenvalues with ui = wi being the corre-
sponding eigenvectors. Adsorbing si into ui and wi yields (3).
One could generalize (3) to more than two dimensions by
postulating V (σ1, . . . , σn) = ∑r

i=1 a1(σ1) · · · an(σn). This for-
malism leads, however, to computational issues when used in
optimization algorithms [45]. Instead, we utilize the density-
matrix renormalization-group analogy, and hence cast (3) in
the vector product form:

V (σ1, σ2) = a1(σ1) · a2(σ2),

with a1 and a2 being some r-dimensional vectors. We then
generalize:

V (σ1, . . . , σn) =
∏

i

Ai(σi ), (4)

where Ai are matrices with rank r or less (A1, An are of size
1 × r and r × 1, correspondingly, A2, . . . , An−1 are of size r ×
r), r is this rank of the decomposition. The elements of the
matrices Ai are the parameters of the LRP. Thus, the tensor-
train decomposition reduces the number of these parameters
from mn to nmr2. In the context of our three-component alloy,
σi can take either of the three values (V, Co, or Ni). We found
that r = 5 is an optimal rank and thus about 900 parameters
were fit instead of 1.6 million.

The parameters are found as a result of solving the mini-
mization problem with the following functional:

1

K

K∑

k=1

|E (σ (k) ) − Eqm(σ (k) )|2, (5)

where σ (k) are the atomic configurations, the total number of
which in the training set is K , and E (σ (k) ) and Eqm(σ (k) ) are
the energies of σ (k) predicted by LRP and calculated by DFT,
correspondingly. The minimization was done with an alter-
nating least squares method that reduces to simply optimizing
one matrix Ai at a time (this is a linear problem), and simulated
annealing which consists of adding random Gaussian noise to
every element of Ai with a magnitude that gradually reduces
from one iteration to the next.

The dependence of V on its parameters is not linear. Thus,
different local energy minima exist in the parameter space.
Therefore, depending on the initial parameters, the minimiza-
tion algorithm finds different local minima. The latter means
that each LRP gives independent energy predictions, and with
a trained ensemble of several LRPs, the uncertainty level of
the LRP model can be estimated. In this work, an ensemble
of 10 LRPs was used. The 10 LRPs differ by the random
initialization of the matrices Ai in Eq. (4). The coefficients of
each matrix were drawn from a normal distribution with zero
mean. The value of the variance does not affect the results

FIG. 1. Workflow for the LRP training and the new structure
sampling. The sketch is similar to the one implemented in Ref. [29].

because, at each step of the optimization, the matrices Ai are
rescaled to the data [34]. We find that, in practice, all 10 LRPs
have comparable fitting errors.

The initial training set consisted of random disordered
configurations with sizes 3 × 3 × 3 (108 atoms), 3 × 2 × 2
(48 atoms), 2 × 2 × 2 (32 atoms) confined to equimolar (for
108- and 48-atom cells) or as close to equimolar as possible
(for the 32-atom cell). The number of configurations with 108,
48, and 32 atoms was 86, 70, and 70, correspondingly, in the
training set, and 10, 10, and 9 configurations in the validation
set. We note that fcc point symmetries were applied, so that
each configuration enters the training set together with the
other 47 equivalent configurations, thus effectively generating
about 10 000 data points to determine the 900 parameters of
the LRP.

To improve the accuracy of the LRP, the workflow from
Ref. [29] (see Fig. 1) for selecting new configurations is
used. MC calculations are conducted for systems with 108
atoms. The values of the enthalpy and heat capacity for the
LRP ensemble are compared for different temperatures, and
configurations that correspond to the temperature range with
the highest deviations are sampled.

The sampled configurations are added to the training and
validation set and the new ensemble of LRP is trained. Each
training starts with a new random distribution of initial matri-
ces Ai. This procedure continues until the training error stops
changing significantly. In this work, 40 new configurations
were sampled and added to the data sets.

The rank is an adjustable parameter and, to choose it, we
considered values from three to six. Starting from r = 5, the
accuracy of prediction achieves 2 meV/atom.

LRP is a representative of the machine-learned class of
interatomic potentials and can be compared with the cluster
expansion method (CE). In contrast with the CE [46], LRP
has a form of many-body interaction without separating it into
two-body, three-body, etc. Similarly to CE, if atomic displace-
ments do not change the topology of the lattice structure, then
the local lattice distortions can be taken into account.

C. Monte Carlo method

The LRPs are used in a canonical Mote Carlo method [47].
We mainly focus on the temperature range of 1100–1500 K,
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as the experimentally observed order-disorder phase transition
is at approximately 1175 K [4].

The simulations are carried out for systems with 6912
atoms (12 × 12 × 12 in lattice units, based on a four-atom
primitive fcc cell). The number of MC steps is adaptive for
different temperature ranges: for temperatures higher than
2000 K—2 × 108 steps, for the interval of 1250–2000 K—
2 × 109 steps, for temperatures lower than 1250 K, the
number of steps is 2 × 1010. For the smaller structures with
32 atoms (2 × 2 × 2 in lattice units), the number of steps is
two orders of magnitude smaller. To achieve an unbiased aver-
aging, the so-called burn-in approach [48] was implemented,
i.e., we neglected the first half of MC steps for each tempera-
ture value. This technique is necessary at the range of temper-
atures that include phase transitions but was used permanently
in our calculations to improve the robustness of the algorithm.

D. Multiple-scattering theory calculations

As a second approach, in order to obtain a qualitative
picture of the impact of low- and high-temperature mag-
netism as well as the effective interactions in V-Co-Ni
alloys, the Green’s function multiple-scattering theory was
used as implemented in the exact muffin-tin orbital method
(EMTO) [49–51]. The electronic structure of the random
alloys was obtained within the coherent-potential approxi-
mation (CPA) as well as by using the locally self-consistent
Green’s function (LSGF) technique [52,53] within the EMTO
method, ELSGF [54].

All the EMTO-CPA calculations were done by utiliz-
ing the Lyngby version of the Green’s function EMTO code,
which allows us to calculate effective interactions [55]
employing the screened generalized perturbation method
(SGPM) [19,56,57], to include the impact of longitudinal
spin fluctuations (LSFs). Moreover, the screened Coulomb
interactions are treated properly in the single-site DFT-CPA
approximation [20,21].

The self-consistent electronic structure calculations were
performed in the local density approximation (LDA) using
the Perdew and Wang functional [58] while the total energies
were calculated by the full charge-density technique [51] em-
ploying PBE-GGA [40]. The Brillouin-zone integration was
done by using a 30 × 30 × 30 Monkhorst-Pack grid [43] or
finer. All calculations have been done with lmax = 3 for partial
waves, and the electronic core states were recalculated at
every iteration during the self-consistent calculations for the
valence electrons.

The ELSGF method was used to calculate the screened
Coulomb interactions used in the DFT-CPA part of the
EMTO-CPA calculations. In this case, the one-electron po-
tential of the alloy components and the total energy have
additional contributions, V i

scr, and Escr, respectively, due to
the screening charge around atomic spheres, which is not
accounted for in the single-site approximation [20,21]:

V i
scr = −e2α0

i

q̄i

SWS
,

Escr =
∑

i

ciE
i
scr, (6)

Ei
scr = −e2 1

2
α0

i βscr
q̄2

i

SWS
.

Here, q̄i and α0
i are the net charge of the atomic sphere of the

ith component in the single-site CPA calculations and its on-
site screening constant, respectively; SWS is the Wigner-Seitz
radius; Ei

scr is the contribution of the screened Coulomb inter-
actions to the electrostatic energy of the ith alloy component;
βscr is the average on-site screening constant, which accounts
for the electrostatic multipole moment energy contribution
due to the inhomogeneous local environment of different sites
in a random alloy.

The screening constants for the Co-Ni-V alloys were
determined from ELSGF 864-atom 6 × 6 × 6 supercell calcu-
lations. The on-site screening constants α0

i were determined
from the conditional average of the net charges qi and the
Madelung potentials V Mad

i of the ith component in the super-
cell, 〈qi〉 and 〈V Mad

i 〉, respectively, as

α0
i = SWS

〈
V Mad

i

〉

e2〈qi〉 . (7)

The intersite screening constants α
i j
p are needed in the cal-

culations of the electrostatic contribution V i j−scr
p to the SGPM

potential at the pth coordination shell for the i- j pair of alloy
components,

V i j−scr
p = e2αi j

p

q̄2
i j

SWS
. (8)

Here, q̄i j = q̄i − q̄ j were obtained in the supercell ELSGF
calculations for random alloys from the screening charge by
exchanging the corresponding alloy components (i and j in
some specific sites have random local environment on aver-
age) as described in Refs. [20,21].

III. RESULTS AND DISCUSSION

A. Phase stability and short-range order

A goal of the present work is to investigate the degree of
short-range order in VCoNi alloy as well as the interplay with
lattice distortions and relaxation effects, which is closely re-
lated to the exceptional strengthening of the VCoNi alloy [4].

As sketched in Fig. 1, we first included 226 configurations
to the training set. We trained an ensemble of 10 LRPs, which
were used in the MC simulations for systems with 108 atoms.
We analyzed the dependencies of enthalpy and heat capacity
on temperature obtained with these 10 LRPs. Based on this
initial set of potentials, we sampled a number of new config-
urations at a range of temperatures close to the precomputed
order-disorder phase transition, i.e., near temperatures where
significant fluctuations among the initial potentials was ob-
served. As a result, 40 new configurations were selected and
included in the fitting procedure, namely, 10 configurations
for each of the following temperatures: 760, 860, 1100, and
1140 K. These configurations were recalculated with VASP

(see above) and added to the training and validation sets, thus
improving the prediction error of the finally utilized LRPs
down to 2 meV/atom.

We also evaluated the impact of including a number of
DFT-computed 4 × 4 × 4 supercell results to the training
set. The accuracy of the energy prediction is still about
2 meV/atom, resulting in qualitatively similar predictions of,
e.g., specific-heat capacities, as will be shown below. We
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FIG. 2. Specific-heat capacity CV (T ) for fcc VCoNi from MC
simulations for a 12 × 12 × 12 simulation box. The dashed and solid
black lines represent the average heat capacity calculated with an
ensemble of 10 LRPs including up to 3 × 3 × 3 supercells in the
training set and including up to 4 × 4 × 4 supercells in the training
set, respectively. The light and dark gray areas show the uncertainty
level of the LRPs ensembles.

thus concluded that the inclusion of explicit DFT supercell
calculations beyond the mainly used 3 × 3 × 3 cells into the
LRP training set would not qualitatively alter our main results
and conclusions.

To investigate the temperature-dependent evolution of SRO
and phase stability of the alloy, LRP-based MC simulations
were carried out for larger 12 × 12 × 12 supercells (6912
atoms). In Fig. 2 the dependence of specific-heat capac-
ity on temperature, CV (T ), is presented. We first observe a
phase transition with a characteristic peak in CV (T ) around
1400–1500 K. There is a slight dependence of the transition
temperature depending on the largest DFT-computed super-
cells in the training set, which is manifested in deviations
mainly around the peak whereas the lower and higher tem-
peratures appear less size-dependent. The overall transition
temperature is also somewhat higher than the experimental
one, which is between 1123 and 1173 K [4,13]. The dis-
crepancy may be related to missing thermal fluctuations such
as, e.g., vibrations which could in principle alter the predic-
tions [59]. We also note that the present approach cannot
account for the experimentally observed hexagonal κ phase.
On the fcc lattice we observe a phase transition to a partially
ordered structure, where V atoms almost fully occupy one
of the four primitive cubic sublattices of the fcc structure, as
shown in the inset of Fig. 2. The computed atomic concentra-
tion of V for each of the four sublattices are shown in Fig. 3.
This clearly shows that the observed phase transition is caused
by a strong site preference of V on one of the four sublattices,
while the remaining V is equally distributed on the other
sublattices, which corresponds to the M3V-L12 ordering.

The L12 structure is formed in Co3V alloys as a metastable
phase if the alloys are quenched and constrained to the fcc
lattice (see, e.g., Ref. [60] and references therein). Recently,
a similar L12 ordering has been also reported for a four-
component fcc FeCoNiV alloy [61]. It may therefore be that
the L12 ordering observed in the present work for VCoNi
can exist as a metastable phase. The experimentally observed

FIG. 3. The dependence of site occupancy on temperature in the
equimolar 12 × 12 × 12 cell for vanadium. The four different lines
correspond to the four primitive cubic sublattices of the fcc structure.

σ phase [4,13,62] at temperatures below 800 K cannot be
covered by our simulations because we are operating on the
fcc lattice. We therefore focus in the following on the SRO
effects at high temperatures.

To quantify the degree of SRO, the Warren-Cowley SRO
parameters [63] were calculated:

αi j
m = 1 − pi j

m

cic j
, (9)

where α
i j
m is the Warren-Cowley SRO parameter for the atomic

types i and j at the mth coordination shell; pi j
m is the probabil-

ity of finding atom type j at the mth coordination shell i of
atom m, and ci, c j are the concentrations of elements i and j
in the alloy. According to this definition, positive (negative)
values of the SRO parameter at the mth coordination shell
mean that atoms i and j avoid (attract) each other at the
corresponding coordination shell.

The computed SRO parameters for the first and second co-
ordination shells are shown in Figs. 4(a) and 4(b). Obviously,
there is strong ordering between pairs Co-V and Ni-V at the
first coordination shell, while these pairs exhibit strong repul-
sion at the second coordination shell, which corresponds to
the L12 type of ordering (in the completely ordered A3 B-L12

phase, the Warren-Cowley SRO parameters at the first two
coordination shells are −1/3 and 1). Thus, the formation of
atomic SRO in VCoNi alloys is mainly driven by the strong
interaction of V with Co and Ni.

B. Interplay and impact of short-range order
and lattice distortions

Since the fcc VCoNi solid solution is prone to significant
local lattice distortions [4], it is important to evaluate how
relevant the inclusion of the corresponding relaxation energies
are for an accurate modeling. An advantage of the LRP ap-
proach employed here is that local distortions can effectively
be “switched off,” allowing us to explore their impact and
relevance, e.g., for the prediction of SRO parameters as well
as phase stability.

Similarly to our previous work [29], we evaluate the impact
of local distortions and the corresponding relaxation energies
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FIG. 4. Temperature-dependent Warren-Cowley short-range or-
der parameters derived from an ensemble of 10 LRPs.

by training a new ensemble of LRP potentials on a set of
static DFT calculations followed by subsequent MC runs,
as discussed above. Thus-obtained specific-heat capacity is
shown in Fig. 5 and shows that the M3V-type of ordering
sets in only above temperatures of 2000 K. This is about
30% larger compared with the case when relaxation effects are
included and highlights the importance of taking relaxations
into account for modeling such alloys.

To further elucidate the impact of relaxation energies, we
performed an additional MC simulation from the previous
LRPs, including relaxations for a smaller 4 × 4 × 4 supercell
(containing 256 atoms) and selected ten snapshots at three
representative temperatures: at 1000 K for a M3V type of
ordered structure, at 1540 K for a strongly SRO-containing
solid solution, and at 4000 K to represent a random solid so-
lution. In total, 30 new structures were recalculated with DFT
to extract the relaxation energies, which are depicted in Fig. 6
(light blue bars). The error bars indicate the standard deviation
for the mean value as obtained from averaging over the ten
individual calculations for each case. There is a clear trend of
increasing relaxation energies with increasing disorder. The
largest relaxation energies of roughly 30 meV/atom are found
for the solid solution and are almost twice as large as found for
the M3V type of ordered structures. This is consistent with our

FIG. 5. Temperature dependence of specific-heat capacity based
on MC simulations for equimolar fcc VCoNi 3 × 3 × 3, 4 × 4 × 4,
and 6 × 6 × 6 supercells. The LRPs utilized are trained on static
DFT calculations without taking local distortions into account. The
observed phase transition is observed around 2000 K, which is
roughly 30% larger than if relaxation energies were properly taken
into account.

findings that the computed transition temperature decreases
drastically if relaxation effects are included in the simulations.

Based on the examples considered, we also evaluated the
impact of the electronic free-energy contributions to the phase
stability. As mentioned above, all our calculations include
electronic free energies based on a Fermi smearing parameter
of 0.1 eV, which corresponds to a temperature of 1160 K, close
to the experimentally observed phase transition. In Fig. 6,
the electronic free-energy contributions are shown in light
green for the different scenarios. Although the electronic free
energies are overall of similar magnitude as compared with

FIG. 6. Electronic free-energy contributions at 1160 K (corre-
sponding to a Fermi smearing of 0.1 eV) in light green, relaxation
energies (light blue), and mean-squared atomic displacements (light
red) obtained from DFT calculations of 256-atom (4 × 4 × 4) su-
percells selected from MC runs for three different scenarios: MC
simulations at 1000 K (M3V type of ordering), at 1540 K (SRO-
containing solid solution), and at 4000 K (random solid solution).
Relaxation energies and lattice distortions increase with increasing
disorder. The standard deviation obtained by averaging over 10 dif-
ferent supercells for each case is depicted as error bars.
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the relaxation energies, the relative changes are much smaller,
implying that SRO does not significantly alter the electronic
density of states, and vice versa, the computed phase transi-
tion is not largely affected by electronic excitations. There
is overall a slight increase in the electronic free energy with
increasing disorder, indicating that the electronic excitations
contribute to the stabilization of the solid solution.

We next considered the reverse impact of relaxations and
SRO, i.e., how largely SRO can impact the amount of local
lattice distortions. For this purpose we resort to the mean
square atomic displacement (MSAD), defined as

MSAD = 1

N

∑

i

(
Ri − Rideal

i

)2
, (10)

where i runs over all atomic positions Ri, Rideal
i denotes the

ideal fcc lattice positions, and N is the number of atoms i.
In previous works [4,64], the square root of MSAD had

been utilized as an effective parameter to quantify the degree
of lattice distortions as well as a promising descriptor corre-
lating with the mechanical strength of the alloy. It is therefore
important to evaluate how the distortions are affected by the
degree of SRO found in the alloy. We therefore resort to the
30 DFT calculations at the three representative temperatures
discussed above and evaluated the MSAD parameter for all of
them. The results are also shown in Fig. 6 (light red colored
bars).

Similar to the relaxation energies, we again find an increase
in lattice distortions with increasing disorder. The relative
change is, however, less than with the relaxation energies. For
example, for the M3V type of ordered structures, the square
root of MSAD drops by about 25%. For the strongest SRO-
containing solid solution case chosen at 1540 K, just above the
transition temperature (see Fig. 2), the decrease in the lattice
distortion parameter is only 6%. Assuming that the MSAD
value correlates with the alloys’ solid-solution strengthening
ability [4,64], it would suggest that SRO has only very little
impact on this mechanism. Note that other defect energetics,
such as stacking-fault energies, might be more sensitive to
SRO as, e.g., recently discussed for CrCoNi [6,7].

C. Finite temperature magnetism and effective
interactions in VCoNi alloys

The low temperature magnetism of VCoNi alloys depends
on the alloy content and the state of order. Although fcc Co has
the highest Curie temperature among all the transition metals,
it is a relatively weak itinerant magnet, i.e., the local magnetic
moment of Co atoms is quite sensitive to the magnetic state,
the local structure, and the chemical environment of Co atoms.
At 0 K, e.g., fcc random Co-V alloys are nonmagnetic if the
concentration of V is larger than 50 at.%.

The ferromagnetic state of pure Ni is much weaker than
that of Co, and Ni loses its magnetic moment in fcc random
Ni-V alloys when the concentration of V exceeds 12 at.%.
One would therefore expect the ordered Ni3V to be nonmag-
netic. This is indeed true for the ground-state DO22 structure.
However, the L12-Ni3V is ferromagnetic with the main contri-
bution to the total magnetic moment of the alloy coming from
the V atoms, which is on the order of 1μB, while the magnetic
moment of Ni is only 0.05μB and is parallel to that of V.

Exchanging some Ni by Co (randomly) in L12-Ni3V
changes the ground-state magnetic structure: in the
L12-(Co50Ni50)3V alloy, the magnetic moment of Ni remains
small, of the order of 0.05μB, and is parallel to that of Co,
which is about 0.5μB, while the magnetic moment of V is
about 0.4μB and it is antiparallel to those of Co and Ni. If one
now increases the concentration of V towards the equimolar
VCoNi composition in the L12 structure by placing randomly
V atoms on the Ni and Co sublattices, the alloy becomes
nonmagnetic. At the same time, the equimolar fcc VCoNi
random alloy is ferromagnetic, with the following magnetic
moments of Co, Ni, and V: 0.6μB, 0.07μB, and −0.1μB,
respectively. However, its magnetic energy, i.e., the difference
of the total energy of this alloy in the ferromagnetic and
nonmagnetic states, is only about 8 K/at.

This is a short description of what happens with the local
and total magnetic moments and magnetic state in V-Co-Ni
alloys at 0 K, which have been obtained in the EMTO-CPA
calculations in this work. It is clear that, independently of the
ordered state, VCoNi alloys can be considered as nonmagnetic
at very low temperatures. However, this cannot a priori be
assumed at high temperatures, where entropy induces large
longitudinal spin fluctuations in all three alloy components.
In particular, the disordered local moment (DLM) calcula-
tions [65] with the LSF entropy 3 ln(〈m〉) [66] show that,
at 1000 K, the magnetic moments of Co, Ni, and V are
1.33μB, 0.65μB, and 0.87μB, respectively. These are quite
sizable magnetic moments stabilized by the LSFs and one
can therefore expect that they may also affect the effective
interactions in this alloy, which we discuss below.

Following Ref. [55], we consider here for clarity a qua-
sibinary form of the pair interaction contribution to the
configurational Hamiltonian:

H (2) = −1

2

∑

p

∑

α �=β

V (2)−αβ
p

∑

i j∈p

δcα
i δcβ

j , (11)

where V (2)-αβ
p are the effective pair interactions of the α and β

alloy components at the pth coordination shell; δcα
i = cα

i − cα

is the concentration fluctuation of the α component from its
average concentration cα

i in the alloy at site i.
In Fig. 7, we show the effective pair interactions for all

the three pairs of alloy components in equimolar VCoNi al-
loy obtained from the SGPM nonmagnetic and paramagnetic
DLM-LSF calculations. The DLM-LSF calculations were per-
formed at 1000 K. These calculations are done for the ideal
fcc lattice positions, without consideration of local lattice
relaxations, which are quite significant in this system due to
relatively large size mismatch of Co-V and Ni-V alloy pairs,
as has been demonstrated above.

To get the total effective interactions, the strain-induced
interactions of Co-V and Ni-V pairs has therefore been es-
timated in the dilute limit of pure Co and Ni considering V
as an impurity. The strain-induced interactions of the Co-Ni
pairs were neglected since the size difference of these alloy
components is insignificant, at least compared with those of
Co-V and Ni-V alloys [67]. These calculations were also
done with VASP using 256-atom (4 × 4 × 4) supercells in the
ferromagnetic state to mimic the increased size of alloy com-
ponents at high temperatures due to the quite substantial local
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FIG. 7. Effective pair interactions obtained from the SGPM
calculations in nonmagnetic and at T = 1000 K paramagnetic DLM-
LSF states. Squares show the total pair interactions, i.e., SGPM
interactions and strain-induced interactions obtained from separate
VASP supercell calculations (see text for details). The Co-V and Ni-V
pair interactions obtained in the VCoNi and respective binary M3V
alloys are compared in the insets.

magnetic moments. Note that the strain-induced interactions
are mainly due to the size effect, while SGPM catches the
“chemical” part of interactions, related to the renormalization
of the electronic states.

Obviously, the main effect due to strain-induced interac-
tions and LSF is related to a renormalization of the effective
interactions at the first coordination shell. The LSF effect is
more pronounced in the case of Co-V interactions due to
relatively large local magnetic moments of Co and V, while
the local lattice relaxation effects are stronger in the case of
Ni-V pairs, as Ni atoms are somewhat smaller than Co ones.
The important point here, however, is that all these renor-
malizations only change the interactions quantitatively, not
qualitatively. Both, Co-V and Ni-V interactions still promote
the so-called (100)-type ordering specific for the L12 structure
on the fcc lattice.

There is, however, an interesting observation if one com-
pares the pair interactions obtained in the VCoNi alloy with
those obtained for the binaries (shown in the insets in Fig. 7).
In fact, the Co-V and Ni-V interactions in binary Co3V and
Ni3V alloys are very similar (see red and black diamonds in
insets in Fig. 7). The ground state of Ni3V is, however, DO22

and not L12. This suggests that the DO22 structure is stabi-
lized by multisite interactions, which is indeed the case. The
multisite interactions are also quite strong in the equimolar
VCoNi alloy, especially the three-site interactions. However,
their effect on ordering in VCoNi is very small due to the

equimolar, i.e., also more “symmetric,” alloy composition
because the three-site interactions contribute to the ordering
only for asymmetric alloy compositions.

Thus, the pair effective interactions play the most impor-
tant role for atomic ordering in the equimolar VCoNi alloy,
and the Monte Carlo results presented in Fig. 4 can be read-
ily understood from the pair effective interactions in Fig. 7:
strong ordering of Co-V and Ni-V atoms at the first coordina-
tion shell and at the same time a quite strong repulsion at the
second coordination shell. The Co-V and Ni-V SRO param-
eters are extremely similar in the Monte Carlo simulations
presented above, which is due to the fact that the effective
interactions for these pairs of alloy components are very close
to each other. And, finally, the atomic SRO parameters of
NiCo are also consistent with the trend in the corresponding
Ni-Co effective interactions in Fig. 7.

IV. CONCLUSIONS

The phase stability and short-range order (SRO) in the
medium entropy fcc VCoNi alloy have been investigated
by utilizing a recently developed machine-learned potential
in combination with DFT supercell calculations as well as
employing a complementary DFT-based multiple-scattering
theory. On the fcc lattice, a phase transition to an M3V-type of
ordering is found at about 1500 K. Above the phase transition,
the SRO is mainly caused by a strong ordering of Co-V
and Ni-V pairs at the first coordination shell accompanied
by their relatively strong repulsion at the second coordina-
tion shell. By using two complementary DFT approaches,
we showed that the impact of longitudinal spin fluctuations
on the effective pair interactions is small compared with the
chemical contribution and does not change the qualitative
trends.

The inclusion of atomic relaxations and relaxation energies
was found to be important for a quantitative description, and
neglecting it results in an increase of the predicted transi-
tion temperatures by more than 30%. This is caused by the
large relaxation energies of the VCoNi solid solution. On the
other hand, the relative lattice distortions remain rather strong,
also in the SRO-containing alloys. A small decrease in the
mean square atomic displacement value suggests that SRO
would affect the overall lattice distortions only very little,
and hence likely the friction stress and solid solution ability.
Finite-temperature electronic free-energy contributions also
contribute to the stabilization of the random alloy, although
their relative impact is weaker as compared with the effect of
lattice relaxations.
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